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MAGNETOHYDRODYNAMIC WAVE PROPAGATION FROM
A LOCALIZED SOURCE INCLUDING HALL EFFECT

By E. G. BROADBENT
Royal Aircraft Establishment, Farnborough, Hants

(Communicated by D. Kiichemann, F.R.S.—Received 5 October 1967)

1. INTRODUCTION

2. M.H.D. TREATMENT INCLUDING HALL
CURRENT

2-1. Typical laboratory plasma

2:2. Derivation of the wave number sur-
face

2-3. Wave propagation at very low fre-
quency

2-4, Wave propagation at frequencies of
the order of the ion cyclotron
frequency

2:5. The effect of a doublet disturbance
at the origin

Lighthill’s theorem on magnetohydrodynamic wave propagation from a localized source gives an
asymptotic expression for the wave amplitude at large distance from the source and this theorem is
applied to a laboratory plasma. Attention is focused mainly on conditions where the Alfvén speed is
large compared with the sound speed and where the wave frequency is of the same order as the ion
cyclotron frequency. These conditions are also typical of certain natural plasmas. The manner in
which the wave amplitude depends on the direction of propagation and on the ratio of the wave
frequency to the ion cyclotron frequency is examined and illustrated by graphs which also cover
a range of source sizes. An extension is made into a two-fluid theory such that electron inertia
and electron source terms can be included and the effect of finite electrical conductivity is

considered.
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In 1961 suggestions were made (Broadbent 1g61) for setting up a low temperature laboratory
plasma in potassium vapour with a view to investigating the propagation of acoustic waves.
These tentative ideas have now been developed into a detailed set of proposed experiments
with fairly precise values of plasma temperature and density, magnetic field strength,
frequency, etc. (Knight 1965) and it seems appropriate to examine more closely the expected
behaviour of acoustic waves diverging from a source in such conditions. The theory is given
by Lighthill (1960), who considers the propagation of waves from a source of length scale /in
the far field, such that the distance r from the source region is large compared with /. This
theory assumes that the electrical resistance of the plasma is negligible, i.e. that the ion-
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120 E. G. BROADBENT

electron collision frequency is small compared with the applied frequency. Lighthill (1g60)
applies the theory in two examples,

(1) where the speed of sound a,, given by dp/dp at constant entropy (p and p are gas
pressure and density respectively) is finite, as also is the Alfvén speed a, given by By/(up)*
where B, is the steady magnetic field strength, and # the magnetic permeability.t In this
application a single perfectly conducting fluid is assumed such that the magnetic field lines
are frozen into the gas;

(2) the speed of sound is put infinite (ay/a, > 1) but Hall current is permitted to flow

and the magnetic field is frozen into the electron gas.
In example (1) it was found that if ¢, > «, a sound-like wave propagates outwards from
asource with the shape of a distorted sphere while a mainly hydromagnetic wave propagates
within a narrow cone whose axis lies along the magnetic field. This, at least, is true of
disturbances like divv (=A) which is of main interest in sound-like waves (v is the local
fluid velocity), or dv,/dx (= 1"), where x is the direction of B, but Lighthill shows also that
the x-component of vorticity propagates without attenuation in the wx-direction. If, in
example (1), a, > a,, the rdles of the two types of wave are reversed and it is the sound-like
wave that propagates within the cone; this is in fact the state of affairs to be expected in the
laboratory. The second example shows that the two remaining variables (since divv = 0
when a,—00) again propagate within a cone whose axis lies along the magnetic field. One
of the main features of the proposed experiments is to test this conical propagation.

In § 2 of the present paper Lighthill’s results are extended to cover the case where Hall
current is included and both g, and «, are finite, although the limit a,/a,—co0 is of particular
interest. The Hall effect is found to lead to conical wave propagation at frequencies below
the ion cyclotron frequency, and the amplitude distribution is examined both for a pure
source and a doublet. These results are deduced from a wave number surface, with the aid
of a theorem due to Lighthill (1g60), and in § 3 this surface is obtained by a different method
keeping separate equations for the ion gas and the electron gas and applying matrix algebra
in a manner akin to that used, for example, by Allis, Buchsbaum & Bers (1963). This method
has the advantage that it is rather easier to include additional effects such as, for example,
terms of order electron mass compared with those of ion mass. Such terms are small, but
in the proposed experiments are no smaller than the second-order terms in ¢,/a, (since it is
the square of this ratio that matters) and could be of interest near singularities like w/w, > 1,
where o is the applied frequency and w; the ion cyclotron frequency. These terms are
considered in § 3, and in § 4 the effects of finite conductivity are examined.

In the laboratory the origin of the disturbance will be an applied alternating electric
field and it is a separate issue whether a reasonable proportion of the electric energy
supplied in this way is converted into mechanical acoustic energy, for the ion acoustic waves
carry negligible electric energy. This question has been examined and will be reported
separately, but it appears that adequate acoustic excitation can be achieved within a
reasonable distance of the source. Some confirmation of this is found in the present paper
(§ 3), where sources and doublets in the electron gas only are considered.

+ SI units are used throughout the present paper.


http://rsta.royalsocietypublishing.org/

) |
o \
C

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGNETOHYDRODYNAMIC WAVE PROPAGATION 121

2. MLH.D. TREATMENT INCLUDING HALL GURRENT
2-1. Typical laboratory plasma
Knight (1965) gives typical plasma properties as:

temperature 7° 2300 °K

electron density 7, 2:8x10¥9m~3

sound speed q, 114 X 103ms™!

frequency /27 1-95x 105 Hz

ion collision time 7;; ~ 0196 X 27/ws

magnetic field B, 0-5 Wbhm~2
These figures relate to ionized potassium vapour. The sound speed is the plasma sound speed

iven b

BRERDY _o_ (kslrTn T} .
where

k is the wave number vector,

y  is the ratio of specific heats,

m  is the particle mass,

kg is Boltzmann’s constant (1-38x 10723 J °K~!) and suffix ¢ relates to ions and ¢ to
electrons. Numerical values of the masses are:

m,=9-113 x 10731 £ ‘
m; (potassium) = 6:5x 1026k = 713 x 10*m,.

The numerical evaluation of ¢,in (1) depends on the choice of y; and y,, and in obtaining the
speed of 1140 ms~! Knight argued first, that the number of ion collisions per cycle (about 5)
was sufficient for y, to have its fully relaxed value of y; = §, and secondly, that the electron
motion is so rapid compared with the applied frequency that it is effectively isothermal
giving y, = 1. The ion and electron temperatures are taken to be equal, so that this is
equivalent to taking a mean y of §. Equation (1) also illustrates the fact that the sound speed
is almost exactly ,/2 times what it would be for a neutral gas at the same temperature,
molecular weight and mean , since the electrons contribute pressure but negligible mass.
With regard to frequencies, the parameter o is used throughout the present paper as an
angular frequency, e.g. as in €%, so that frequencies in hertz are indicated by writing o/27.
The ion cyclotron frequency is given by
w; = eBy[/m;
=1-23%x 105571 for By=05Wbm2 (0;/27 = 1-96 x 10° Hz). (2)
Other frequencies of possible interest are the plasma frequency w, and the electron cyclotron
frequency w,; these have typical values given by
0 = (n,e2fem,)}
= 3x 101571 (w,/2m = 4-75 x 101" Hz),
w, = eB[m,

= 8:8x 1010571 (w,/27m = 1-4 x 1019 Hz).

15-2
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122 E. G. BROADBENT
The Alfvén speed ¢, is given by
a; = Byl (#p) = 331 X 10°ms~1L.

Thus (a,/a,)? = 8-43 x 10* is the same order as m;/m,.

These conditions will be used as the basis of the subsequent theoretical applications, since
itis desirable to have a specific aim in mind when considering wave propagation in a plasma
because of the very wide range of possible phenomena. They are, however, typical of both
the ionosphere and the upper regions of the Sun’s atmosphere for certain frequencies and
wavelengths. One prerequisite is that the plasma shall be collision dominated or that
or;, <1 (Knight 1965; Neubert 1966; Frood 1963). In the ionosphere at 330 km altitude
(day time) where 7;; is about % s this implies w < 1 s~ approximately which is much below
the ion cyclotron frequency of about 600s~!. The sound speed is about 10°ms~! and the
Alfvén speed about 5 x 10°ms~! if the neutrals are not disturbed or about 104m s~ if they
participate in the motion. On this last point the neutral mean free path is about 1-3 km and
the ion mean free path about 0-65 km so that the extent to which the neutrals participate
will depend on the wavelength.

In the Sun’s atmosphere typical figures near a sunspot in the chromosphere would be:

T=06x103°K; n, =102m™3; n, = 10 m~3; atomic free path 9x1072m; ion
free path 2 X 10~2m; sound speed 9 X 103ms~1; Alfvén speed (including neutral

gasinertia) 2 X 10°ms~! for amagnetic field of 0-1 tesla; 7;;, = 2 X 1076s; 0, = 107s7L.

‘The subsequent analysis should thus also apply to such regions of the Sun’s atmosphere.

2:2. Derivation of the wave number surface

Lighthill (1g60) gives the asymptotic solution for large r to the equation

22 92 92 92 o
P('g}’g; Pl wh 9}3) u=efxy,z), (4)

where the left-hand side is a polynomial of the second-order derivatives in space and time
of a fluid disturbance u, and the right-hand side is a forcing function such that f vanishes
outside a restricted region. The polynomial P is determined by the physics of the medium,
and will be derived here since it contains terms additional to those given by Lighthill. The
electron and ion momentum equations are (in Lighthill’s notation)

n,m, (%‘%Jrve.we) — —Vp,—M—n,e(E+v,\ B), (5)
nm, (%‘-; +vi.Vvi) — —Vp,+ M+n,e(E4v,A B), (6)

where p is pressure, E is electric field and M is rate of electron momentum loss through ion
collision which can be written M — —n, e (1)
and 7 is the electrical resistivity, with j the electric current density.
To get the equation of plasma momentum, (5) and (6) are added with 7, = 7, and with
curl B

nevl"’“neevp [ P 8
i J 4 (8)
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MAGNETOHYDRODYNAMIC WAVE PROPAGATION 123
this gives (for negligible m,/m;)

P (%Vfrv.w) - —-VIJ% (curl B)a B (9)
where, in (8), the displacement current is neglected. In equation (5) the left-hand side is of
order m,/m; compared with the right and if we neglect this and the resistance term M an
equation for E is obtained

E=~(Yp—e+v9AB). (10)
en,
Maxwell’s equation now gives

B

= —curl E

= curl (v,An B),
/B curl B
—a?:curl{(v— e )AB}, (11)

if we use (8), assume v, ~ v and neglect curl {Vp,/n,} as in Lighthill (1g60) (n, is a direct
function of p,, and nearly proportional to it at the low frequencies appropriate to ion waves).

Equations (8) and (11) for plasma momentum and magnetic field, together with the
continuity equation and adiabatic equation (without dissipation)

a . . B
éz+d1v(pv) =0,

J J 1
9p 2 (_E )
a TV Vb= gt Ve
complete the system. The equations are linearized for small disturbances to give
v 1 1
= ——Vp+— (curl B) A B,, 13
&= " P gy )" Bo e
T = owl(vABy) — b (By.V) curl B, (14)
dp .
gt—=~p0dlvv, (15)
d Y
—Bg = agg’g . (16)

The two applications given by Lighthill use these equations (i) with the last term in (14)
neglected and (ii) with that term included but with (15) equated to zero. To eliminate
unwanted variables it is convenient to write (13) and (14) with B in the x direction, whence

ov 1 B

Vo gy B0 (curl BYa g, 17
B . m;B; d
"avt“ = BO Curl (V/\ l) —;l‘e“ﬁ;“ a_x Curl B, (18)
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124 E. G. BROADBENT

where i is a unit vector in the x direction. The curl of (17) gives

B, d
—&)}curlv —7ﬁ—curlB. (19)
The variable B can now be eliminated by expressing dB/dt in terms of v from (18) and (19),
taking the curl of the resultand substitutingin the equation for 92v/d? from (17). The pressure
gradient is then removed by use of (15) and (16) to get an equation for v which may be
written in component form, with v = (u,v,w) as

%u d
3t2—|—a03 divv = 0, (20)
02 02 miByd oy 50 5 0 PPu  m;Byd d
( 3t2+a1 3x2> +e,u,00 Btv w= aandlvv as 3yd1VV—l— ‘3x3y+ cupy 33 divv,
(21)
[ 02 92 m332 J J PPu  m;B, d 9
(—amte 19x2) py Y LT TG vy —atg divya g s~ aay WY
(22)

A single equation for divv can be obtained by eliminating v and w separately from (21)
and (22), noting that dv/dy+ ow/dz = divv—du/dx, and after performing this addition
substituting for ¥ from (20). There results, with divv = A

TN #e. m N
(5524 ) (5 032)A+ Ao T @V (52— g2) &

P 2 22\ PA
(2 2 ) - [ T
(@368 (gt ) (3y2+322,\' o T4 g (@ 72 7
o mBH_ (PP
A2 2A *_1‘ 72 . =
o VAT (3y2+ 922)A 0. (23)

Equation (23) is also satisfied by « and hence by I'; it is now equivalent to (4) with zero
right-hand side (forcing functions will be considered later) and the polynomial

2 92 P2 7
(W) W’ -3—!/—2) ??:)
is given by the left-hand side. Following Lighthill (1960) we let
G = P(—w? —k:,—k3,—£K3) (24)

where K = (k, ky, k3).
Since 2

there fOllOV\/S

= (' — 2802 K) (02— R kD) — at K 2+ (0]w;)2 at K4 (02 — a3 R2)
+(ah+a) (= a ) (B —K) *—a} dto? K (P— ) +at af
— (atoo?) B (B~ K). (25)
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MAGNETOHYDRODYNAMIC WAVE PROPAGATION 125
In the laboratory a, > a,, so we let
¢ = aglat (26)
and introduce a? = k2 ad|w?, l

" (k) o e

and 1= (0w;)?%

so that o here can be identified with the non-dimensional form of « used by Lighthill (1g60)
in his wave number diagramst and §? with Lighthill’s non-dimensional form of f24-y2.
Equation (25) may now be written

6
(gé’—) G =—e(1—a2—02)4€¥(1 —a?) (2224 0%) — 262}

1 +ea?{a? (a4 0%) —a?— 02+ y (a®+0%) (1 —a*—062)} (28)
and the wave number surface is given by G = 0. As a check we note that when y — 0 the
expression (28) factorizes into («?—¢) times a factor which is proportional to the expression

given by Lighthill (1960) in equation (82). A further check is provided by letting a,—o0
when (28) may be reduced to Lighthill’s (112) times a factor.

2:3. Wave propagation at very low frequency
This is the condition examined by Lighthill (1960) in which y—0 and (28) becomes

(@.)6 G = e(a?—¢) [(a2+0%) (02 —1)+e{l — (@2+02)}]. (29)

wa,
of

2

ay
€= 3 <1

4

o _Ra
= wz
: a4

a, = sound speed

a, = Alfvén speed

I+e

we a=1/ \ e

oc=1+-,}e

Ficure 1. Low frequency wave number surface (full lines) for sound speed small
compared with Alfvén speed.

A wave number surface is defined by the vanishing of the expression in square brackets in
(29) and is illustrated in figure 1. For small ¢ a nearly plane surface is found near « = 1 and
lying wholly between « = 1, where it intersects the axis § = 0, and o = ,/(1+¢) which it
approaches asymptotically as #—>co. In addition there is a small nearly spherical surface
near the origin bounded by a = +./¢ and 0 = 4 ,/{¢/(1+¢)}.

t It is also necessary to interchange a, and a,, as mentioned by Lighthill since here a, > q,.
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126 E. G. BROADBENT

The value of these wave number surfaces in discussing wave propagation follows from
Lighthill’s theorem 2 (1960) which says that the solution of (4) which satisfies the radiation
condition, is asymptotically

2 piwt 1
o dmtet s, CFexp{1(k1x+k2y+W/c32)}+0(;'2_)

; VG| J[K] (30)

as r—>00 along any radius vector / if the sum X is over all points (,, k,, £,) of the surface
G = 0 where the normal to the surface is parallel to / and

r.VG
m>0, (3])

provided that the surface has non-zero Gaussian curvaturc K at each of these points; that
Cis (i) 41 where K < 0 and VG is in the direction of -7, (ii) +1 where K > 0 and the
surface is convex to the direction of 4+ V(G; that

1 @ a0 0 .
Flbukyk) = g5 [ [ 7 flwp 2 espl—ithathy+h2)jdrdyde  (32)

and where G has the form (24).
Here condition (31) is the radiation condition which says that the group velocity of the
waves, VG

must be directed away from the source which is in the region near 7 = 0. In the present
example G is reducible to a quartic in © which may be written

2 4
ai o

Gy == L4 07) (@2 = 1) +efl = (@2 0 }]. (34)

The corresponding expression (Lighthill 1960) for the forcing function due to a point
source ¢ e §(x) d(y) 8(z) on the right-hand side of (15) is for the disturbance I

@q (P avga e ‘
F= 2 (@ V0 5(3) 3(9) (2 (35)
. .1 diyq a3 k? .
and using (32) F= @—}% /c%aﬁ{— 1 +~;—2~}. (36)
These point source results may be regarded as the limit as the length scale /-0 of a source
ot eXp{—(x2+y2+zz)/lz}]
g¢ [ (I/m)* (37)

when the factor in square brackets replaces d(x) d(y) 0(z) in equation (35) and leads to an
additional factor exp (— 1£%?) on the right-hand side of (36). On the wave number surface
G, vanishes and F can be written

quta?(a?—e)

T 8nip (et —1—¢) (38)

Lighthill’s theorem now leads to the result that the near-sound waves propagate only
within a cone whose semi-angle is equal to the range of the slope of the near-plane surface
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MAGNETOHYDRODYNAMIC WAVE PROPAGATION 127

of figure 1 which for small ¢ approximates (Lighthill 1g60) to 18-6¢ degrees of angle. In the

laboratory 6 = (ap/a,)? = 119 X 1075, 1

. (39)
semi-cone angle = 2-2 x 10~*degrees. |

The magnetohydrodynamic waves propagate in all directions but if &, is the energy propa-
gated in the near-sound wave and &, in the m.h.d. wave, then

? = (”—)2 (40)

m uﬂl

This implies that if a non-singular direction is chosen in which each branch of the wave
number surface has a single real normal, then by (30)

i :<VGI;22 |1<|}5 7 lKl},,; (41)

m

Of the various ratios on the right of (41) we can see that the ratio /?/F2 will be given by
(38) with « near unity for F, and of order /¢ for F,,. Thus in the laboratory

(Y =0l

The other factors that enter equation (41) can be estimated from the expression given by
Lighthill for K and |VG]|, and here the appropriate form is that in which G is a function of
a? and 62. Let

a2=A,
) (43)
h
Then  Gy2AB(G G 26 1,6, Gyt Gy G) + Gy GalAG, + BGy)) "
- (4G5 +BG})? ’ )
VG| = 2(AG+BG})Y,

where suffices denote partial differentiation. Using (34) the ratio {(VG)? |K|},/[{(VG)?| K|},
is found to be of order ¢ whence & 16, = O(c) (45)

which is of order 1074 in the laboratory experiment.

The result (45) applies to the energy of the wave only in so far as it is supplied by I'since
(35) represents the forcing function for the disturbance du/dx. To determine the whole of
the energy in the wave it would in general be necessary to solve for the disturbance com-
pletely, but in the present case the only other contribution comes from div v. The forcing
function for A is found to be for the point source (for a source of length scale / the same
modifications as before apply)

qad 02
S= EVZ (a%gxaﬂﬂ) 3(x) 8(y) d(z) (46)
2
and by (32) F= 553%0—5%(0% k3 —w?) (47)
which becomes on the surface G; = 0
F— qut(a?—e) (48)

~ 8m3py(a2—1—¢)

16 VoL. 263. A.
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128 E. G. BROADBENT
and the energy ratio & 16 — 0(e) (49)

or 10730 in the laboratory. The implication of the fact that &, is much greater for the
A component than the I' component is that for the m.h.d. wave the fluid particles are
displaced almost entirely normal to the magnetic field, a result which accords with expecta-
tions since propagation along the field lines takes the form of transverse Alfvén motion very
nearly. By contrast in the much more powerful near-sound wave the solution for A is very
nearly the same as for I', the difference being the extra a? in the numerator for 1" which is
a factor between 1 and 1-¢; thus du/dx is much larger in magnitude than dv/dy + dw/dz and
is of opposite sign.

The analysis of this section has been given for the sake of completeness. It shows that for
all practical purposes under the laboratory conditions of § 2-1 waves of very low frequency
from a localized source will propagate only along the magnetic field lines and will closely
resemble ordinary sound waves. Physically one may think of the plasma as being very stiff
magnetically and very flexible gas-dynamically so that all the energy goes into the gas-
dynamics.

2-4. Wave propagation at frequencies of the order of the ion cyclotron frequency

Lighthill (1960) discussed this case only in the incompressible limit (¢—>0c0) and his
expression for G can be recovered from (28) by noting that, in the context of large a,, «? and
§% are each of order ¢ and by retaining the terms of O(e*). The laboratory conditions of
current interest, however, correspond with ¢ < 1 and with «, ¢ and y all of order unity. If
the terms in ¢3 and €2 are neglected on the right of (28) the wave number surface may be
defined by G, == 14y(1—a2—02) =0, (50)
where the simple factors in (28) have been discarded. The form of the surface is shown in
figure 2 for various values of y. In the low frequency limit, y = 0, the waves propagate only
along the magnetic field at the sound speed and the surface is the plane @ = 1. As y increases
the surface becomes distorted into a hyperboloid of revolution of which the asymptotes are
a cone whose semi-angle reduces with increasing y until the singular condition is reached
at y = 1 when the surface degenerates to the line § = 0. During the same range of y the
energy in the wave is also propagated within a cone comprising the envelope of the normals
to the wave number surface. The semi-angle of this propagation cone therefore increases
with y and reaches 90° at y = 1 as shown in figure 3. For values of y greater than unity the
hyperboloid becomes an ellipsoid with major axis joining the points (a,f) = (1,0) and
(—1,0), and whose eccentricity reduces with increasing y approaching a sphere as y —c0.

As noted in §2-3 the amplitude of the wave motion depends very much on the nature of
the forcing function. For the case of a disturbance near the origin as given by (37) the
forcing function for the disturbance A where G has the form (25) is given by

EpR B, ma R P o .
F= b g (gt 20t ) Vi g i T Ve (51)
— 2 2 2 2
here fi= gexp{— (¥*+y>+2%) /% (52)

po(lym)’
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=02

/!
A

Ficure 2. Wave number surface for various values of x(a; —o0). Asymptotes shown dashed.
x = (0/w)?; o = kafo; 0 = (a,/w) (k3 +43) (k is wave number vector).

90
a
601
w0
5]
5]
-
oL
(%)
°
= -
&
30F
origin of disturbance
! VEailvet
’ no energy propagated
0 B E— outside this cone

X
Ficure 3. Variation of semi-angle of propagation cone with .
Inset, illustration of conical propagation.

and for I' the forcing function is
2 0 2 o\ # mid} 9* ot . O 2] o,
J= o 3t2{ Fra (3x2+v )}?_x_z—"ez,up 51?29?‘V 19 VS (53)

Equations (51) and (52) are obtained by using (37) on the right-hand side of (15) in the

derivation of (23) for A and I respectively To determine the corresponding values of F it
16-2
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is easy to show that

© @ © . 0\ 2n an%n e
Jo I ettt by k2] () dsdyde = (—ap et (o

Po
and that

© 0 © 2n
f f f exp[—i(k, x+kyy+ky2)] V¥f, dedy dz = (—1)n‘-’;}— oA (55)
—0 J —00 J —w 0

Using these results in equation (32) with f given by (51) and (53) and making the
substitutions (26) and (27) leads to, for A

6
F= 8—17?; ;’% e~ (02 4 2) [62 — 20% — ya (0% +02) +at] (56)
and for I' 1 06
= ‘é;ﬁ,;q‘ 2 e R o262 — (2024 02) 6 — ya2(a2 -+ 02) +a2(a2+02)]. (57)
0

That these are compatible in order of magnitude with the expression for G in (28) can be
seen by noting that the coefficient of G in (28) is ¢3/wS.

In the context of the laboratory experiment, in which ¢ is very small, the terms in ¢? and ¢
within the square brackets of (56) and (57) may be neglected, and in order to avoid the
added complications that arise if the finite size of the disturbance is taken into account a
point disturbance will first be assumed so that the exponential factors in (56) and (57)
become unity. For large values of £, however, this will not be true and it should be remem-
bered that such regions of the wave number surface will contribute little to the energy of
propagation. In practice the finite size of the disturbance is likely to be important; e.g.

272
exp (— H2?) = exp _“’_a% (a2 4-0%)) (58)

and if  and g, are taken as 10°rad/sec and 103m/sec respectively (see §2-1) then for
=2x1073m (58) becomes exp{— («?>+0?%)} which cannot be assumed equal to unity
without introducing significant errors.

When only the lowest order terms in ¢ are retained the differential equation (23) simplifies
and in particular the operator ¢2/0x2V2is common to all terms, both on the left-hand side
(equation (23)) and on the right-hand side (equation (51)). This operator may be cancelled
since a function ¢ satisfying 9%/9x2V2¢$ = 0 would simply represent another forcing function
additional to the one of interest described by f et This cancellation is equivalent to
cancelling the factor a?(a2+-02) from both G and F whence G may assume the form G, in (50)
and F, using (56) becomes (ignoring the factor ¢/873p, since only relative amplitudes

mater) F = e a2y (a2 4)}, (59)
or in the limit £/ -0 F=a2—y(a>+62). (60)
To compare the wave amplitude at different frequencies and wave numbers we may define
a non-dimensional amplitude function # given by

2|
96, VIK(G]* o

i =
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MAGNETOHYDRODYNAMIC WAVE PROPAGATION 131
With (50) and (60) this gives for propagation of A, with the use of (44),

i = {l0—-p) @)} (62)
on the surface G, = 0.

The amplitude function # given by equation (62) is plotted against « in figures 5 and 6
for various values of y less than one and greater than one respectively. When y < 1 the
curves are drawn for « > 1 only since in this range of y the wave number surface has no
branch in the range |a| < 1, and conversely for y > 1 the curves are drawn for « < 1 only.
To determine the relative amplitude for waves propagating at some angle ¢ to the direction
of magnetic field it is necessary first to find the value of a for which the chosen direction is
normal to the wave number surface, and then the appropriate value of 4 is given for this
from figures 5 and 6. The required value of « can be found from figure 4 on which is plotted
the direction of the normal to the wave number surface (relative to the magnetic field)

against «, given by 1

(80]d0) o’

although in view of the symmetry it is sufficient to disregard the sign in (63) and take ¢ to
be a positive angle less than 90°, as has been done in figure 4.

tan¢g = (63)

90
X=11
2 ] 12t
X=09
5
6or  ® i
£
o 8t
5
T, 05 u
g |
30}
02 ar
0 1 7 3 0
o o
FIGURE 4 Ficure 5

FiGURE 4. o on the wave number surface for different directions of propagation relative to the
magnetic field (¢).

Ficure 5. Variation of amplitude with « (¥ < 1) for point source. Asymptotes are shown dashed.
The wave number surface is confined to |e| > 1 for ¥ < 1.

The most interesting range of y is that between 0 and 1. In this range propagation only
takes place for ¢ < ¢, say, where ¢, is the half angle of the propagation cone (figure 3) and
increases to 90° as y increases to one according to tan ¢, = 4. /{y/(1 —y)}. For given y, less
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132 E. G. BROADBENT

than one, the amplitude # increases with « and becomes indefinitely large as ¢ approaches
¢, which corresponds with the asymptotes on figures 2, 4 and 5. In fact the asymptotic part
of figure 2, which represents the conical part of the wave number surface, is specifically
excluded from Ligthhill’s theorem (equations (30) to (32)), since the Gaussian curvature K

X-—+00

=5 |
0-8-

04t

Ficure 6, Variation of amplitude with o (x > 1) for point source. The wave number
surface is confined to |a| < 1 for x > 1.

is zero there, and what happens is that « instead of behaving like 7~! behaves like 7~* for this
region of the surface (Lighthill 1960). The implication is that for large 7 the amplitude
distribution in the wave at a fixed distance from the point source measured along the
magnetic field lines, would be zero outside a circle of radius rtan ¢,, would be large just
inside the circle and would diminish rapidly at first and then more slowly towards the centre
of the circle.

Fory > 1 the amplitude increases with y from zeroaty = 1 to4 = 1 aty —o0, and is spread
fairly evenly in all directions, although the amplitude in directions nearly normal to the
field is always greater than in directions along the field.

These results for the point source, and particularly those for y < 1, are greatly modified
for practical source sizes. The amplitude then takes the form

,_A=p) @@=} [ =1+
where 2= %%2 (65)

so that A is a non-dimensional source radius. The influence of the exponential term is to cut
out the contribution to % from that part of the wave number surface where a is large, which
is just the part that contributes most (for y < 1) in the case of the point source. The effect is
shown for A = 0-5 in figures 7 and 8.

If figure 7, where A = 0-5, is compared with figure 5, where 1 = 0, it is seen that for
small y the amplitude falls away steadily with increasing « instead of growing, and that for
o greater than about 2-5 it is vanishingly small. The implication is that as the wave beam
crosses a plane normal to the magnetic field, the illumination from the finite source is
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MAGNETOHYDRODYNAMIC WAVE PROPAGATION 133

greatest near the centre and becomes vanishingly small at about 0-9 of the limiting radius
rtan @y The contrast between propagation from a point source and a finite source (A = 0-2
and A = 0-5) is illustrated in figure 9 where # is plotted against tang/tang, at a fixed
distance from the source. The ratio tan ¢/tan ¢, gives a measure of the distance from the axis

4 08F 0-8 X~
X=5

p 2

0-4} o4l
B —_\x
1 1 1 1
0 0 04 0-8
a o
Ficure 7 FI1GURE 8

Ficure 7. Variation of amplitude with o (y < 1) for source A = 0-5.

Ficure 8. Variation of amplitude with o (y > 1) for source A = 0-5.

of symmetry, and since the radius vector r from the source to the point of measurement is
assumed fixed the amplitude 7 plotted on figure 9 is that appropriate to a sphere with centre
at the source: it is as though the wave beam were allowed to illuminate the inner surface of
such a sphere. As y increases from 0-2 to 0-5 to 0+9 for A = 0-5 the maximum intensity of
illumination moves outwards from the axis of the beam towards the limit of illumination
where tan ¢ = tan ¢, although the amplitude always falls to zero by the time the limit is
reached. The peak amplitude may be found from differentiation of (64) which yields the
result that the direction ¢ for which the wave amplitude is a maximum is given by ¢(e,)
from figure 4, where

al =y (Q%Jr 1) or 1 whichever is the greater. (66)

Evidently the point source, 1 — 0, has «; —00 as expected.

The variation of amplitude over a plane normal to the magnetic field may be seen from
a plot of 7 cos ¢ against the ratio tan ¢/tan ¢, since on such a plane the factor r~!in the wave
amplitude as given by equation (30) is proportional to cos ¢. The result is shown in figure 10.
'The cos ¢ factor increases in importance as y approaches unity and has the effect of reducing
the amplitude peak for y = 0-9, 1 = 0-5 so that the amplitude remains nearly constant out
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134 E. G. BROADBENT

to 80 9, of the limiting radius of the beam and then falls to zero at the limiting radius. The
amplitude distribution (figures 9 and 10) for the smallest finite source considered (1 = 0-2)
follows that for the point source fairly closely near the centre of the beam before passing
through the maximum (66) and falling to zero at tang/tan @, = 1-0. The maximum
becomes sharper with increasing y.

0-8

@
B

0-6

<@
5y

S

i cos¢

(outer scale for dashed curves; inner scale for full line curves)
o
(3]

0-4

02

(=1
—

(outer scale for dashed curves; inner scale for full line curves)

0 0 04 0-8 0
tan ¢/tan ¢, tang/tan @,
Ficure 9 Ficure 10

FiGURE 9. Variation of amplitude with distance from the axis at a fixed distance from the source.

Ficure 10. Variation of amplitude with distance from the axis on a plane normal to the magnetic

field.

For y > 1 propagation takes place in all directions, but as the size of the source increases
the amplitude near « = 1 becomes relatively small, particularly for the smaller values of y.
As y—oo0 the waves spread evenly in all directions for all values of A, a result which is
physically understandable since y —oco implies w—>00 when the reactance of the plasma
becomes purely inertial in character (inductive) and the inertia distribution is isotropic.

The results are summarized in table 1.

2:5. The effect of a doublet disturbance at the origin

It has been assumed that the disturbance at the origin takes the form of a fluctuating
source of plasma, something like a small pulsating sphere. Other types of disturbance are
possible, and in fact more likely in a real experiment. We may first examine the effect of
a doublet. This could be considered as the combination of a source at the point (sn;, sn,, sn5)
and a sink at the origin so that n gives the doublet direction and s is very small. The forcing
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function is then

g et {3 (x—sn,) 8y —sny) 0(z—smg) —3(x) 0(y) (2)}

which leads to a factor (e7%:»—1) being applied to the function F for the point source
gt (x) d(y) d(z). Since s is very small this is equivalent to a factor (—isk.n), or for the

amplitude factor # we may take

iy = i, (k.n)s, (67)

where

i, is the doublet amplitude,

i, is the point source amplitude.

TABLE 1

x <1

(1) A limiting cone of half-angle ¢;, apex at the
source and axis along the magnetic field can
be defined such that if waves propagate at an
angle ¢ to the field, no waves exist for ¢ > ¢,

(2) ¢, increases from 0 to 90° as y increases from
Otol

(3) The amplitude # decreases to zero as y - 1
(4) A point source, A = 0, gives peak amplitude
just inside the limiting cone, ¢ — ¢,

(5) A finite source, A > 0, gives & — 0 as ¢ — ¢,
Peak amplitude occurs at the beam centre for

x>1
(1) Waves propagate in all directions

(2) The amplitude # increases from zero when
X = 1 to some value constant with respect to
a and ¢ as Y - o©

(3) For a point source, A = 0, the increase of
amplitude with y is monatomic but for A > 0
the amplitude in some directions may pass
through a maximum for some ¥, 1 < x < o

(4) For relatively large A and small y, waves propa-
gating along the field have a much smaller
amplitude than those propagating across the

small y and large A, but for sufficiently small A field
it occurs for some ¢ such that 0 < ¢ < ¢,
0-8
X—o00
=()- =5
3k xX=02 06|
o L
i)
'g @ 0-4f- 2
o
=
= N
1+ 0-2F
0-5
| 111
09
1 Il 1 i il I
0 1 2 0 04 08
o o
Ficure 11 Ficure 12
Ficure 11, Variation of amplitude with « (¥ < 1) for doublet A = 0-5.
Ficure 12, Variation of amplitude with o (¥ > 1) for doublet A = 0-5.
17 Vor. 263. A.
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136 E. G. BROADBENT

The same conversion factor (k.n)s holds even if the doublet is smeared over a length
scale /in the manner of (37). In the particular case where the doublet points in the direction
of the magnetic field (67) becomes

iy = 1,as, 1

68
where § = wsf ao-J 19%)

The non-dimensional parameter § is effectively a non-dimensional frequency in a given
experiment of varying frequency but constant doublet strength. For given § the effect on
the graphs of 4 so far discussed is that the ordinate must be multiplied by «: this has been
done for figures 7 and 8 (i.e. 4 = 0-5) and the result plotted in figures 11 and 12.

The effect of disturbances of a different kind, and in particular a disturbance of the
electrons near the origin, is more conveniently treated in § 3.

3. TWO-FLUID TREATMENT
3-1. Derivation of the wave number surface

Equations (5) and (6) are used separately, instead of after addition to form a single plasma
equation. The advantage is that electron inertia effects can be included if desired and also
that it is easier to treat certain types of forcing function. For example a local electrical
disturbance will mainly drive the electrons in the first instance so that such a disturbance
can be simulated by a source or doublet in the electron fluid only.

The linearized equations are:

Continuity on,|ot+ndivv, = f, el (69)

on;|dt+ndiv v, = f, e, (70)
where forcing functions have been included, and analogous to (37) would take the form

o Nexp{=(ey+2))
‘o (LJm)?®
and similarly for f; where N is the total number of electrons or ions produced per second
over the length scale /. In (69) and (70) it is assumed that the electron and ion densities are
respectively n+n, and n-+n; where n, and n; are the perturbation quantities.

(71)

Momentum

me”?g’ie»{_—yeklinvne—ir"‘z?l(E”‘ BOA V(?) = OJ (72>
v, ! T T .
m;n "gi'+7ik37ivni —en(BE—Byav,) =0, (73)
where it is assumed that Vp, =v,k;T,Vn, (74)

and similarly for Vp,. From Maxwell’s equations, where B = B+ B, and B, is the perturba-
tion quantity we can obtain another relation between E and the fluid velocities

curl E = —Q%; curl B, = uj = pen(v,—v,),


http://rsta.royalsocietypublishing.org/

\

ya

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

JA

yi

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGNETOHYDRODYNAMIC WAVE PROPAGATION 137
whence curlcurl E = — pen (% — %‘%) . (75)

Following Allis ¢t al. (1963) we shall use matrix equations for the vector quantities but
instead of immediately assuming perturbations of the form exp {i(wé—k,x—k,y—k52)} as
they do, we shall retain the differential operators leading to an equation such as (4). The
following differential operators are defined

d
D t 'a“t) (76)
a scalar operator, usually associated with the unit matrix;
d|dx
D,=10d/dy|, the grad operator; (77)
d]oz
D, =1[0/dx, d|dy, d|dz], the div operator; (78)
iz
= 2 0 G the curl operator (79)
) oz x|’ ¢ P '
d J
B
Also define [, as the antisymmetric matrix
O o0 O
I,=10 0 —1 (80)
o 1 0

which is used in association with cross-products of B,and B is taken to be in the x direction.
Elimination of #, and n; from (69), (70), (72) and (73) then gives

v, =—enD;' DE—y,k,T,D;' D, f,civ! (81)
and v, =enD; ' D,E—y;k, T, D;' D, f; e, (82)
where we have defined

D, = m,nD}—y,k; T,nD, D;—enBy1, D, (83)

D; = m;nDi—v,kzT;nD, Dy +enB1, D,. (84)

Finally, use of (81) and (82) in (75) gives
DX+ e’ Di (D' + D7) Y E = penky D, (y, T,D7' D, fi—v, T,D;' D, f,) . (85)
Equation (85) is a generalization of (4) to a vector equation, but if (85) is written

02 92 92 g2

where 4 is the matrix operating on E, then the result of eliminating £, and Ej, say, would be

|4| E, = a,;.b, (87)

17-2
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where a,; is the first row of the matrix of cofactors of the elements of A. Thus the wave
number surface G = 0 is given by

IA(——wza “k%’ ‘k%, “‘kf%)l = 0. (88}

To simplify matters a little, we may make use of the axisymmetry to select the y direction
such that the vector k lies in the (x, 7) plane. The matrix 4 in (88) is formed by the addition
of three matrices, 4, + 4,4+ 4, say, where

=7t & 0
Ay =~k | & —& 0 (89)
0 0 -1
and (£,7,0) are the direction cosines of k,
€ & 0] !
Ay = —pe’n? 0\ —mnw?+y, kyTink? | &y 9% Of-+iwenB 1] (90)
0o 0 o
& & 0 !
Ay = —pue’n’w? | —mnw?+y, kT 0k &n 52 0| —iwenB,1,| . (91)
0 0 o

The relative importance of the different parts of 4, and 45 (which are closely related to 7,
and 7, respectively (Allis ef al. 1963)) may be seen by dividing both inside and outside the
round brackets by the factor 4%2n%w?/k%, and noting that

m K _aik?
ueln — w* Y
v, kp Tk a3 k?a}k?
,uegnaﬂ h 2)2 (luz % (92)
iBok*  alk?.
o~ o 1/

In equations (92) a, and a, are velocities based on the ion gas alone.

From (88) we may take G = |4, +4,+ 4, (93)

and to the same order as (28), the determinant (93) can be evaluated after first letting
m,—>0 in (91). The result may be written

G=w[[Barof B+ -1 +{BEN a0 19 1 -2ae0+9)

-~~—v—-{ (148) 128Xy —yd3(1+s)+d3(1+s) ¢ —1}]
P e e T P CHUE N

2k2 P 2k2 T
where PR L . A (95)

(94)
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A significant point is that throughout the numerator, 4 is everywhere multiplied by (1 +5)
which implies that the relevant speed of sound is that based on the sum of the electron and
ion partial pressures, exactly as in the single fluid treatment when Vp,+- Vp, was taken as Vp.
To compare (94) with (28) it is thus necessary to let

B(1+4s)]d3 =¢, d3(1+s)=0240> and d§(1+s)E = a?, (96)

after which the expression in square brackets in the numerator of (94) becomes identical
with the right-hand side of (28).

3-2. Electron inertia and electron forcing functions

It is possible to retain (m,/m;) in the expansion for G. If this is done a corrected expression
corresponding to (28) is obtained and, neglecting (m,/m;)?, there results

6
(&) G = en2{u2(a?+0%) —a?— 02+ y(a2+0%) (1 —o2—02)}

({1 02) (267 0%) — a7 (a2 O) L (1+-5) (1= 1) — (@2+0%) g -+2])

+.o, (97)

where = "e (aé) . (98)
SM; \Ap/ jon

In the laboratory condition of § 21, with 7, = 7%, y;, = %, 7, = 1, the value of 7% is about 2-1;
thus the extra term introduced into the coefficient of ¢2 (by comparison with (28)) is
certainly not small. On the other hand, with ¢ of order 1075 in the laboratory, it is of more
practical interest to use the method for examining different types of disturbance in condi-
tions such that both m,/m; and a3/a? are negligible compared with unity.

If m,[m, is neglected it is of interest first to recover the results of § 3 by letting f, = f;, with
each given by (71), and by taking the divergence of equation (82). This gives div v, rather
than div v, but to the extent that m, is negligible by comparison with m;, v, is indistinguish-
able from v, and it has in fact been verified that the two-fluid equations yield a left-hand
side and right-hand side identical with (28) and (56) respectively if the relations (96) are
used. The matrix 4~!is given in the appendix. The actual expression for F that is found by
this method, and that corresponds with (56) is

Nob e=42%2 vy
N B 1) (- 26— a8 (99)

F

Suppose now that instead of f; = f, it is assumed that f; = 0 but thatf, is still given by (71),
corresponding with a source term in the electron gas only. An extension of this would
be to a doublet in the electron gas which would correspond with a disturbance at the
origin comprising an oscillatory shift of the electrons in the doublet direction. This is
in fact very much what one might expect to be able to do using electric fields in the
laboratory.

With a source in the electron gas only it is found that the resulting expression for F is
identical with (99) except that the factor (1+s) is replaced by s, a result which has a simple
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physical explanation, and could indeed have been anticipated. At these low frequencies
(displacement current neglected) and in the case of a massless electron gas, the field electrons
can move instantly to neutralize any electric field that is set up. Actually the electric field is
not completely neutralized: a little remains in equation (72) to balance the electron
pressure gradient, and this residual electric field acts on the ion gas in (73). In effect the
electric field is a very stiff spring trying to maintain overall neutrality and is sufficiently stiff
that negligible energy is stored in it and the electron pressure gradient is transmitted
directly to the ions. It follows that a source or doublet in the electron gas has the same
effect as a source or doublet in the neutral fluid of § 2 on the basis that the partial pressure
of the electron source is the same as the pressure of the source in the neutral fluid.

4. AN EFFECT OF COLLISIONS (FINITE ELECTRICAL CONDUCTIVITY)

In§ 3 any momentum exchange between ions and electrons was neglected. Such exchange
can be represented by introducing collision frequencies »; and v, into the momentum
equation so that (72) and (73) become

m,n %+Vpe+en(E—B0 AV,) = —nm,v,(V,—V,), (100)
ov,
mzn»ﬁ+Vpi~en(E—BoAvi) = —nm,v,(V;—V,), (101)

where

v, is the average number of times per second that an ion loses all its momentum (relative
to the electron fluid) to electrons through collisions,

v, is the corresponding collision frequency for electrons.
The momentum exchange terms on the right-hand side of (100) and (101) are identical
with the terms +-M in (5) and (6) that were later discarded. There follows

m;v; =m,v, (102)
and approximately (Chapman & Cowling 1952)
% A%
b, = (2me) by v, = (2771@) Vi (103)
m; m

e

In equation (101) the order of magnitude of nm;v; v; compared with nm; dv,/dt is v;/ @ which
from (103) and §2 is about 4 x 10~3 (of order ,/(m,/m;)) and so may be treated as a small
quantity such that (v;/w)? may be neglected to the same accuracy as is implied in the neglect
of m,/m,. In equation (100) the collision term is equal to that in equation (101) and the
left-hand side is of the same order of magnitude as the left-hand side of (101) so that again
the collision term is small, of order ,/(m,/m;) compared with the dominant terms in the
equation. At low frequencies (y < 1) the effect of momentum exchange is quite negligible
since v, —V, is then small. However, as y increases the constraint imposed on the ions by
the magnetic field becomes less and v, begins to differ substantially from v, so that
momentum exchange begins to have an effect. For example a plasma source, with zero v,
and v;, gives for relative values of v, and v, (if we use the analysis of § 3 and retain only the
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most significant terms
s ) *—1) x—E
v, ~ | &y , V,~| 0 (104)
iEnx 0

with the limiting case as y —> 0 g _p

Vl.~|: 0 } VgN[ 0 ] (105)
0 0

On the other hand as y increases the difference between v; and v, does not introduce
significant charge separation, which depends on div (v;—Vv,) and from (104)

divv, = divv, ~&(y—&2). (106)

When collisions are taken into account the wave number surface becomes modified by
a small amount. If we take the surface for no collision terms to be given (from (28)) by

(e 40%) {y(1—a?2—0%) —1+4a%} =0 (107)
this becomes with collision terms included and using the method of § 3
(@2 407) {y (1 — 22— 0%) — 1 0B+ (in,f0) (o2 +07)
X p{20%(a?+02) — 202 — 0%} 4 (v;/0)? (a® 4 0%)2y2(1 —a?—0?) = 0. (108)

The determinant which leads to this expression is given in the appendix. If terms in (v;/w)2,
which are of order (m,/m;) are neglected we can interpret this as implying a small imaginary
part to the wave number surface. To examine this the following change of notation is

convenient replace ? by a?(1 +1ig),)

replace 6% by 0%(1+1k) f (109)

so that a? and 02 satisty the same wave number surface as in § 2, but there is an additional
imaginary part to be accounted for in the wave motion. We have had

u~expilk,x+kyy+ky2)
= expik(§x+7y)

. i Oy) —4% Oh
which now becomes U~ exp [1/c(ocx—|— dyo ) N fi(?sgx +0hy) ] . (110)
The real part of the exponential in (110) suggests that the momentum exchange gives
rise to a small exponential rate of decay of the waves. Since the energy is propagated along
rays from the origin this rate of decay must have the same direction ¢ as the group velocity,
i.e. the normal to the real part of the wave number surface; then

tang = =, (111)
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Also from the imaginary part of (108) after making the adjustments (109), we have

wtgly—1)— (1) (— Dk = (£57) % 20 1). (112)

Equations (111) and (112) determine g and 4, and the resulting rate of decay can be
expressed in terms of distance along the radius vector, with due account taken of the fact
that propagation is always outwards from the origin. The result is

@@= (p2e-1) ‘
emexp| =51 ) (118)
where {=m,la, (114)

and where o has the value given by the wave number surface for a given direction of
propagation ¢.

To confirm that the real part of the exponential is always negative (corresponding with
decay of the waves), we can see from (111) and (112) that g is given by

ST - e )
which is always negative. The shape of the wave number surface, however, shows that the
x component of group velocity has the same sign as the ¥ component of phase velocity; if
we take this to be positive then £, and « are negative and £egx in (110) is positive. The
relative signs of the y components of phase velocity and group velocity are the same for
¥ > 1 and opposite for y < 1, but k0hy is positive in either case.

We define R to be
_ e =1)] (x+20°—1)
iy —e?) (x—1)} (116)
such that U~ e R

Large R thus means that the corresponding waves decay relatively quickly. R is plotted
against « on figures 13 and 14 for y < 1 and y > 1 respectively, and if these diagrams are
read in conjunction with figure 2 it can be seen that for y < 1 the decay is most pronounced
for direction of propagation nearest to the limiting cone, and that for y > 1 the decay is most
pronounced for directions of propagation normal to the magnetic field. For all values of y
the exponential decay becomes vanishingly small as the direction of propagation approaches
the direction of the magnetic field. A further illustration of this effect is given for y < 1,
i.e. for those values of y for which there is a finite propagation cone, in figure 15 where R is
plotted against tan ¢/tan ¢,.

These results show that finite electrical conductivity has the effect of reducing the
amplitude of waves propagating near to the limiting cone (y < 1) or normal to the magnetic
field (y > 1). In particular this means that for y < 1 where conical propagation takes place,
finite electrical conductivity has a similar effect to finite source size and the point source
results are accordingly unlikely to be obtainable in the laboratory. The maximum amplitude
within the propagation cone (y < 1) must be expected either to lie along the axis of the
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Ficure 13. Wave decay due to imperfect electrical conductivity against a (¥ < 1). Wave decays like
e #R¢ where ¢ is non-dimensional radius vector from the disturbance. Asymptotes are shown
dashed.

Ficure 14. Wave decay due to imperfect electrical conductivity against o (y > 1). Wave decays like
e~ where ¢ is non-dimensional radius vector from the disturbance.
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144 E. G. BROADBENT

cone, or to approach the axis of the cone as the distance from the source of the disturbance
increases. At sufficiently large distance from the source of the disturbance propagation along
the magnetic field (in either direction) will be all that remains of the wave.

5. CONCLUSIONS

The nature of wave propagation from a finite or point source in the presence of a magnetic
field such that w/w; ranges from zero through unity to infinity has been indicated in table 1
of §2-4. In addition it has been shown:

(1) that a disturbance in the form of a doublet leads to an amplitude factor (k.n)
compared with a simple source, where n is the direction of the doublet;

(2) thatthe effectofchangesin electron temperature is fully represented by corresponding
changes in the plasma pressure p = p,+p;;

(3) that sources in the electron gas have the same effect as sources in the neutral plasma
to the extent that m,/m; is negligible;

(4) that finite electron inertia can be allowed for if desired (equations (97) and (98));

(5) that finite electrical conductivity adds to the equations terms of order ,/(m,/m;) which
may be interpreted as introducing a small exponential rate of decay to the waves;

(6) that this decay is most pronounced for directions ¢ close to ¢, (y < 1) or close to
90° (y > 1) and is vanishingly small for ¢ = 0.

APPENDIX. THE MATRIX A~! (§3) AND THE WAVE NUMBER DETERMINANT (§4)

The matrix A(—w?, —k3}, —k3, —k3) from equation (88) may be written

el @ d, %‘31
d=g | d 0 i, (A1)
0 .
—ley  —ify ¢
where ¢ = y(1—d§)— (1—di&? (A2)
and ay = dion?+1—din*— ! (1 +*i"')
1 1 0 ¥ d%ng 9

by = dicE®+1—d3e?,

— 42 72
¢y = ajc+1—ag,

) ) (A3)
dy = En(—dic,+dj),
o= =g 1—a(1=a),
fi = a1 —-a).
Py a, dy, 1e,
Then Al = k%E‘ d, by, ify], (A4)
‘ —le, —1ify ¢

where C is the determinant of the matrix in (A1) and a, ... f, are the cofactors of a; ... f; in
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the same matrix. The expressions are

@y = G PE2+dFe(1+E2—2823) + (1 —&3) (1 —d3&?) —y(1—d5)?,

A, Pe) 1
by = a‘{62772+a%€{1+77 (1—2d3) Ty (1 +aos§2>;

gl

U p
—gx(lwa%)z,

—dg) + (1 —dg) (1 —dgn?)

1 ¢ 1 ¢ (A5)
— g2/t Rtk v
”2#‘“6{1 x(g2+a‘%s)]+l Gy aog)(wa‘%@)’
dy = deEy -+ ok (1 —248) +] (1~ &) (1 —€aF) ~ [y (1- &),
_ ok 7 YA 72
e a2 1—d382)++ . /y(1—d5),
2 IJ g«/X( Og) g«/X( 0)
£ a1c77 2 79 2
= +- { +5 —d }
f2 '\/X \/ Og gz( 0)
and  C— 2[ iy QU= 1 (19)) 131 1))
GRS (1+£%)
B R R o P 1
The determinant which leads to equation (108) is
determinant = |B,+B,|, (A7)

where B, and B, are matrices given by

B =[- ng gz{x 1—dj ~~1}—~-~-~]+n,—g[ ----- {x(1—d )——l}mﬂ--]%ﬂ, iﬁﬂ’éx(ﬁ—éz l)u
P () g, e (1 q) e i, g =51
0 ), U e

(A9)
f (1—@p2), é%%,éf/ Jwgg‘.%_é_u ngfz
B, ~ gl 891 Yo-ge,  Ma-ge-in| @A)
NABE NI WG — gy iy, | (1) |

and where 9; = iv;/0.

18-2
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PRINCIPAL SYMBOLS

symbols units explanation
4; Ay 4,5 Ag matrices (see equations (86) to (91))
B; B,; B, T magnetic field; imposed field; perturbation field
l]g,; D,; Dy; Dy; D,; D Ve ollaerat'orzi (lsge equations (76) to (84))
m~ clectric fie
& &y relative energies (equation (40))
F; F, functions of wave number (see equation (32))
G; G, functions of wave number and frequency (equation (24))
1, antisymmetric matrix (equation (80))
o K Gaussian curvature
\/;;f]; 1 M N m-3 momentum exchange term (equations (5) and (6))
N N g1 source strength (equation (71))
— T °K temperature
< S ay; a, m s~ sound speed ; Alfvén speed
> dy; d, non-dimensional forms of ¢, and «,
@) : e G electron charge
(=4 — LA forcing functions
E O %} see equations (109)
O : I : .
i Am electrical current density
=« k m-1 wave number vector ( k= &, k,, k)
4 ky J K1 Boltzmann constant
Ug l m source size
= m k particle mass
a5 m mass ratio (equation (98))
Owu quatio
8< o n doublet direction
O‘£ n; ng;on, m— particle density; perturbation values
= § ) N m—2 pressure
E = q ks! sogt:ce stretngth
r m radius vector
§ m doublet arm (§ 2-4)
§58 non-dimensional doublet arm; temperature ratio (equation (95))
¢ S time
s ug m s~} velocity amplitude; group velocity
@ dy; d, non-dimensional amplitudes
v m s~! velocity (v = u, v, w)
X3Y; 2z m rectangular coordinates
r s—1 dufox
a kiay/w
v ratio of specific heats
€ ap/at
¢ 7v;lay
/)‘ 7 (&, 3, 0) are the direction cosines of k in §§ 3 and 4. Also resistivity
T (equation (7))
r ~ 1/9\ aol /\é(k§+k§) Jw
wlf2a,
< S U Qsm! permeability
> — v s~! collision frequency
o L £ direction cosine (see %)
(=4 - P km—3 density
= O T s collision time
T ) ?; b propagation angle relative to magnetic field ; semi-angle of propa-
—~ ( gat;(z)n cone
X ofw;
05 0,5 W;5 O, g1 frequency; plasma frequency; ion cyclotron frequency; electron

cyclotron frequency

In general suffix 7 refers to ions and suffix ¢ to electrons; e.g. p; and p, are the partial pressures of the ion and
clectron gases respectively.
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